

COURSE TITLE: Python Backend Development
Course Code:: Course Type: IC
Teaching Hours/ Week (L:T:P): 0:1:4 Credits: 3
Total Teaching Hours: 0+15+60 CIE + SEE Marks: 50+50=100

Preamble (brief description).

This course on Python Backend Development offers a comprehensive introduction to
building robust, scalable, and efficient backend systems. By focusing on core principles of
backend development, such as server-side programming, API design, database integration,
and application security, students will acquire the skills necessary to create dynamic web
applications. The course emphasizes the practical application of Python’s extensive libraries
and frameworks, such as Flask and Django, to develop RESTful APIs, manage data, and
ensure seamless communication between the client and server. Through hands-on projects
and real-world scenarios, students will gain critical problem-solving skills and the expertise
required to architect reliable backend solutions for modern applications.

Course Outcomes

At the end of the course students will be able to…

CO1 Understand the principles and importance of backend development in modern software systems.

CO2 Implement backend functionalities using Python, focusing on frameworks like Flask and Django.

CO3 Design and develop RESTful APIs to facilitate seamless client-server communication.

CO4 Integrate databases with backend applications for efficient data management.

CO5 Analyze and ensure the performance, scalability, and security of backend systems.

PO – CO mapping

 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8

CO1 3 3 2
2 1 - - 2

CO2 3 3 3 2 1 - - 2

CO3 3 3 3 3 2 - - 2

CO4 3 3 3 2 1 - - 2

CO5 3 3 3 2 1 2 2 3

Note:

Course content

Theory​ ​ ​ ​ ​ ​ ​ ​ ​

1.​ Overview of Client-Server Architecture.
2.​ HTTP Protocol, REST.
3.​ Web Services.
4.​ Overview of Backend Frameworks in Python: Flask.
5.​ Overview of Backend Frameworks in Python: Django.
6.​ RESTful API Design: Principles and Best Practices.
7.​ RESTful API Design: Principles and Best Practices.
8.​ API Documentation and Tools (Postman).
9.​ API Documentation and Tools (Swagger).
10.​CRUD Operations using Flask.
11.​CRUD Operations using Django REST Framework (DRF).
12.​Introduction to Databases.
13.​User Authentication: Tokens, Sessions.
14.​User Authentication: OAuth2.
15.​Securing APIs: HTTPS, CORS, Rate Limiting.

Practical

Week Contents (Practical)

1 Create a simple view that returns "Hello, World!" and map it to a URL.

2 Create a view that displays a list of hyperlinks to various social media websites and
map it to a URL in urls.py.

3
Create a base template with a navigation bar and footer. Extend this base template in
two child templates, one for a homepage and another for an "About Us" page
(Controller functionality).

4

Create a model for a blog post with fields: title, content, and published_date. Add,
retrieve, modify, and delete records using the Django shell. Configure Django to use
a SQLServer database. Migrate an existing model to the SQLServer database. Create
a model to store user-uploaded images and display these images on a gallery page.

5 Register the blog post model in the admin panel. Customize the admin interface to
display only the title and published_date fields.

6 Create a form for a "Contact Us" page with fields for name, email, and message.
Handle form submission and display a success message upon form submission.

7 Configure email settings in settings.py. Create a function that sends an email to the
site admin when the contact form is submitted.

8 Create a Web API using Django REST Framework to manage blog posts (CRUD
operations). Also implement web API using flask.

9
Create a serializer for the blog post model. Use the serializer to handle JSON requests
and responses. Create a function-based view to handle API requests for creating and
retrieving blog posts.

10 Implement JWT Authentication and Cookie-based Authentication in Django.

11 Implement authorization in Django.

12 Demonstrate full-stack development skills: Choose a problem and implement a
solution showcasing the Python backend development techniques.

Suggested Reading:

Text Books:

1.​ Flask Web Development: Developing Web Applications with Python by Miguel
Grinberg.

2.​ Django for Professionals by William S. Vincent.
3.​ Python API Development Fundamentals by Jack Chan.

Web Resources
1.​ Flask Official Documentation
2.​ Django Official Documentation
3.​ REST API Design Guidelines
4.​ Real Python Tutorials
5.​ Postman Learning Center

Video Resources
1.​ Corey Schafer's Python Tutorials (YouTube).
2.​ Traversy Media's Backend Development Tutorials (YouTube).
3.​ NPTEL Backend Development Courses.

https://docs.djangoproject.com/
https://restfulapi.net/
https://realpython.com/
https://nptel.ac.in/

Part B: Course Evaluation System

Assessment
System

Assessment
Component Description Weightage Marks

Practical
Continuous

Internal
Evaluation

(CIE)

CIE-I

Students are instructed to form a
group of not more than 2 students
and have to compile a project with
the laboratory experiences and
present it at the designated dates,
scheduled by the department:
Marks distribution may be
considered as follows (50 Marks):
❖​ Synopsis Presentation: 10

%
❖​ Presentation 1(After 8

weeks): 30%
❖​ Presentation2(After 12

weeks): 40%
❖​ Report : 20 %

—-------------------

5 M​
​

15 M

20 M

10 M

​
​
​
​
50 M

CIE (Practical) 50% 50 M
Semester End

Evaluation
(SEE)

SEE
Lab Examination

conducted for 2 hours
duration**

50% 50 M

TOTAL MARKS 100% 100

** Semester End Examinations are conducted with the COE Designated Examiners.

❖​ Marks distributions can be considered as follows:
➢​ Write Up: 15%
➢​ Final presentation: 40%
➢​ Viva voce Examination:30%
➢​ Report: 15%

	COURSE TITLE: Python Backend Development

